Problem 1.2

Vector algebra 2*
Given two vectors $\mathbf{A}=(3 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$ and $\mathbf{B}=(6 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}+4 \hat{\mathbf{k}})$ find:
(a) $\mathbf{A}^{2} ; \quad$ (b) $\mathbf{B}^{2} ; \quad(c)(\mathbf{A} \cdot \mathbf{B})^{2}$.

Solution

To find \mathbf{A}^{2}, we take the dot product of \mathbf{A} with itself. We find \mathbf{B}^{2} in the same way. The dot product is calculated by multiplying the respective components and adding them.

Part (a)

$$
\mathbf{A}^{2}=\mathbf{A} \cdot \mathbf{A}=(3)(3)+(-2)(-2)+(5)(5)=38
$$

Part (b)

$$
\mathbf{B}^{2}=\mathbf{B} \cdot \mathbf{B}=(6)(6)+(-7)(-7)+(4)(4)=101
$$

Part (c)
To find $(\mathbf{A} \cdot \mathbf{B})^{2}$, calculate $\mathbf{A} \cdot \mathbf{B}$ and then square the result.

$$
\mathbf{A} \cdot \mathbf{B}=(3)(6)+(-2)(-7)+(5)(4)=52
$$

$52^{2}=2704$. Therefore,
$(\mathbf{A} \cdot \mathbf{B})^{2}=2704$.

